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The titanium —methylene complexes derived from the TiCl  4,—Mg—CH,Cl, system serve as a novel class of ambiphilic carbenoid equivalents,
which not only efficiently effect cyclopropanations of a variety amides but also exhibit high chemoselectivity.

The importance of cyclopropane rings as valuable building (O-iPr).2# To develop new strategies based on the concept

blocks for further structural elaboratiband as important
skeletons in a variety of biologically active compouftas
stimulated the development of new methods for their

of simple tandem methylene transfer reactions, we were
attracted to the carbonyl cyclopropanations promoted by an
ambiphilic carbenoi®, which not only could function as a

construction. Among the most useful recently developed Schrock-type carbene complex to effect carbonyl methyl-

methods are carbonyl cyclopropanations (Schenievhich

Scheme 1. Carbonyl Cyclopropanation
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involve the reductive coupling of carbonyl compounds with
the presumed titanacyclopropane intermediafiermed via
the direct coupling of a suitable Grignard reagent with Ti-
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enatioft but also played the role of a Fischer-type carbene
complex to promote further cyclopropanation of the alkene.
To our knowledge, despite the vast nhumber of metallocar-
bene-mediated carbonyl olefinations and olefin cyclopropa-
nations, progress in metallocarbene-promoted carbonyl cy-
clopropanations has been slow to evolvihe reason stems
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from the nature of the metallocarbenes. We report that the 0.8 equiv of TiC}, effected complete carbonyl methylenation

titanium—methylene complexes derived from the i€l
Mg—CH.Cl, systenmi"9 serve as a novel class of ambiphilic
carbenoid equivalents, which not only efficiently effect
cyclopropanations of a variety of amides but also exhibit
high chemoselectivity.

The indication that such an ambiphilic methylene complex
may exist came as a result of our probing the effect of the
amount of Mg relative to TiGlon the CH transfer reaction
of CH,Cl,. The reaction of a simple amidi with CH,Cl,

was chosen to test the feasibility of the process (Table 1).

Table 1. Typical Amide Cyclopropanation with Gi€l,2
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aReactions were run on a 1 mmol scale in CH/THF (1 mL) at 0-25
°C, unless otherwise notelisolated yield.c Cyclopropanation performed
on a 5 mmol scale.

Exposing morpholine amidéa to 2 equiv of TiCl and 8
equiv of Mg did indeed produce the cyclopropanation adduct
but only in less than 5% yield. Remarkably, using less than
1 equiv of TiCl, dramatically improved the nucleophilic and
electrophilic additions, leading to smooth amide cyclopro-
panations. Thus, reactira with CH,Cl, at 0—25°C using

2266

and alkene cyclopropanation with# h togive the desired
cyclopropylaminea in 81% vyield (entry 1). The reaction
directly scales up; thus, adduéd was obtained in 72% yield
on a 5 mmol scale using 2.8 equiv of TiGInd 30 equiv of
Mg. Pyrrolidine amide4b and piperidine amidelc gave
similar results under our standard conditions (entries 2 and
3). The reaction is best envisioned as involving interception
of the enamine5 formed via a nucleophilic attack of a
presumed titanium chloromethylene compBx(path a) or
methylene complexe3b and 3¢® (path b) on the carbonyl
carbon by a SimmonsSmith-type complex3a® or an
electrophilic titanium methylideng&c followed by reductive
elimination to produck as shown in Scheme 2. Although

Scheme 2. Proposed Mechanism for Amide Cyclopropanation
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this scheme accounts for our current observations, we cannot
rule out the involvement of some titanacyclopropane complex
as the active entity. Further mechanistic work is clearly
required before any definite conclusions can be reached.
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Table 2. Direct Cyclopropanation of Cyclic Amides and
Amides Containing Functional Groups
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a Reactions were conducted on a 1 mmol scale in@MTHF (1 mL)
at 0—25°C, unless otherwise noteblisolated yieldc2.5—3 mL of THF
was usedd Performing the reaction at10 °C.

Changing the substrate to aromatic amdidkand cyclo-
hexanecarbonyl amidée led to equally gratifying results
(entries 4 and 5). Variation of the substituents at nitrogen
was briefly explored. Cyclopropanation onto the acyclic
amine-derived amidedf—h (entries 6—8) was equally

gave an analogous result with titanitimethylene com-
plexes (Table 2, entry 1) wherein the spiro améiewas
obtained in 72% yield. Switching from the seven-membered
ring lactam to the five-membered analogue also gave
satisfactory results (entry 2). Notably, the ring size in the
lactam substrate had some effect on cyclopropanation (entries
3 and 4). Surprisingly, performing the cyclopropanation on
4m and4n at —10 °C for 16 h increased the yield &m
and6n* to 64% and 67%, respectively.

The reaction exhibits good chemoselectivity. As expected,
acetal and sulfide have no effect (entries 5 and 6). Remark-
ably, both acetylenes and alkenes are also tolerated (entries
7—9). The latter is particularly noteworthy because the
reductive coupling of terminal olefins with carboxylates
promoted by the titanacyclopropane intermediate had been
noted previously:*

The efficiency and practicality of this chemistry is il-
lustrated by the very simple synthesis of deuterated cyclo-
propylamines such a&, 7k, and7r by simple tandem Ti—
Mg-promoted CDQ-transfer reactions of CiZl, (Scheme 3).

Scheme 3. Synthesis of Deuterated Cyclopropylamines
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Performing the reaction in CICGi&€H,CI allowed the use of
only 4—5 mmol of CRCl..

The TiCL—Mg-promoted tandem methylene transfer reac-
tions of CHCI, serve as a novel class of ambiphilic
carbenoid equivalents that effect complete nucleophilic and
electrophilic additions. Not only is this titaniurnmethylene
complex highly reactive but it also seems highly selective
in amide cyclopropanations and might become a practical
cyclopropanation reagent. The novel nature involved suggests
several intriguing directions which are currently under active
investigation. Further studies will determine whether this
carbenoid formation promoted by ¥Mg complexes will

effective. Some dependence on the nature of the amide wagye generally useful for other geminal dihalides such as 1,1-

observed because cyclopropanation on formamitieend
4j gave inferior results, giving a moderate yield @t and
6j (entries 9 and 10).

dichloroethane.
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